
Syeda Mahnur Asif
Emaan Hasan

Introduction

This report outlines an attack made on a target connected to a separate, password protected network.
The aim is to take control of the target’s browser. The attack is carried out in 3 steps. The first and
foremost thing to do is to get on to the network that the target is on. For this we used the tool Aircrack-
ng to capture the 4 way handshake and crack the password with a dictionary attack. Next steps include
launching a Man-in-the-Middle (MITM) attack to spoof the traffic, this helped redirect the target to one
of our own websites. Here social engineering techniques are used to persuade the target to click on a
link generated by The Browser Exploitation Framework (BeEF). The link, once clicked on, hooks the
target's browser and allows us to manipulate any vulnerabilities it might have.

Methodology

Step 1: Getting on to the Target's Network

For this, as previously mentioned, we use Aircrack-ng here. This is a suite which in itself contains
many tools like Aireplay and Airodump. This suite comes pre-installed in Kali Linux and is known for
network detail detection, packet sniffing, WEP (Wired Equivalent Privacy) and WPA-PSK (Wireless
Protected Access – Pre-Shared Key) cracking, and analysis of wireless LANs. Any wireless NIC which
has a driver that supports monitor mode can be used with this suite. Aircrack-ng is a branch of the
original Aircrack project that was based on a new attack for a WEP vulnerability, developed by a team
at Darmstadt University, Germany, in April 2007.

In this report, Aircrack-ng's password cracking capability is used to try and find out the password of the
network we want to join. Our target's network uses WPA/WPA2-PSK security which is Protected
Access 2. This uses Pre-Shared Key authentication. Here, the router is configured with a plaintext
password. This passphrase along with the network 's service set identifier (SSID) is used to generate
unique encryption keys for each client. This key is then known as Pairwise Master Key (PMK).

The 4-way handshake was introduced in WPA2 after patching the vulnerabilities present in WEP. This
added security measure made the Access Point and the wireless client prove to each other that both
parties knew the Master Key(PMK) without either of them sending it to the other. The handshake
occurs so that a session key can be generated. A session key requires 2 Nonces (a random integer) PMK
and a MAC address to be created.

A handshake consists of:

1. Access Point generates and sends ANonse to the client.
2. Client generates a Pairwise Transient Key (PTK) using the ANonce it received and the PMK it
already has. Client then replies with a CNonse and its own MAC
3. Access Point then sends its MAC and a GTK (Group Temporal Key) to the client.
4. Client sends an ACK with its MAC.

A network which uses this handshake for authentication can have its password cracked with the use of
the Message Integrity Code (MIC) in the fourth frame. This fourth frame consists of Key Confirmation
Key (KCK) part of the PTK.

Sniffers can sniff out MACs, SSID and Nonces but not the PMK. Thus, to break this, the encryption
cipher (AES/RC4) used underneath needs to be broken. A dictionary attack is used to achieve this.

The 4-way handshake crack occurs in the following outlined way:

1. The handshake is parsed to get the MAC address of the wireless client connecting to the Access
Point, the Access Point's (authenticator) MAC, STA(Station) Nonces, EAPOL payload and the MIC
from the fourth frame. EAPOL-Key packets are used by WPA to distribute session keys to the
authenticated station.
2. Using a dictionary, a candidate password is used to generate PMK (Pairwise Master Key, a session
authorization token)
3. Pairwise Transient Key (PTK) is computed from PMK, AP, Station MAC address and nonces.
4. KCK from the computed PTK is then used to calculate MIC of the EAPoL. If this calculated MIC
matches the MIC parsed from the captured handshake obtained in the first step, then the password has
been successfully.

How Aircrack was used

1. The “airmon-ng check kill” command kills any processes that might interfere with the normal
functioning of aircrack-ng. Network Managers and their related processes like wpa_supplicant are
turned off by this.
2. “airmon-ng start wlan0” puts the NIC in monitor mode. Here wlan0 is the network interface name.
This creates a monitor mode interface callled wlan0mon.
3. A tool in this suite, called airodump is now used. “airodump-ng wlan0mon” command is used to
show all the wireless networks in the area. By this command, the networks' BSSID (Basic Service Set
Identifier, the MAC address of the AP) , the channel it's on, and it's SSID is also revealed. Select and
note the BSSID of the target network here for the next steps.
4. “airodump-ng -c <channel number> --bssid <BSSID of the target network> -w WPAcrack
wlan0mon” focuses on the target network and shows the list of hosts connected to it and their MAC
addresses. WPAcrack is the name we give to the file that will save the handshake. This file is
automatically created in usually /home or /root (if not specified) when a handshake is caught.

Optional step:
Since connected devices have already authenticated themselves to the AP when originally connecting to
it, there can be a possibility of no handshake capture. A handshake is caught when a device is
authenticating itself to the AP. Thus, there is choice between waiting for any already connected device
to either disconnect and then reconnect, or wait for a new device to connect to the network. Instead of
the latter choice, the first is chosen, but waiting for disconnection and reconnection is not done. Here,
the attacker, can bump any of the connected devices off the network by forcibly de-authenticating
them, which will then make them request reconnection to the AP during which the handshake can be
captured.
For de-authenticating, another terminal instance is opened. “sudo aireplay-ng -0 <number of
packets> -a <BSSID of AP> -c <any host's MAC address> wlan0mon” is used to send a specified
number of deauth packets.. At re-connection, the handshake is successfully captured.

When a handshake is captured it is displayed in the terminal. By this point all external work is
complete. The WPAcrack file is located, along with the file path to the dictionary that will be used for
the dictionary attack.

5. “aircrack-ng -a2 -b <BSSID of AP> -w <file path of the dictionary> <file path of for the saved
handshake>.”This starts the dictionary attack. The time can vary widely between a few seconds and
hundreds of years to it not working at all depending on the dictionary being used, its size, and whether
it contains the password used to protect the network.

Assuming the dictionary attack was successful, the password of the network is cracked and now we can
connect to the network where our target is by simply entering the password.

Step 2: Man in the Middle Attack with Ettercap

A MITM attack is essentially when a third party comes in between the communication of two parties.
This is usually a silent attack and both parties believe they are communicating privately and remain
unaware of this intrusion on the channel. The third party could be simply eavesdropping, that is
capturing information being transmitted, or could be altering the information exchanged.

MITM is also known as Address Resolution Protocol (ARP) poisoning. ARP is a network layer
protocol that is used to resolve the link layer address associated with a given IPv4 address. The device
that needs to obtain the link layer address sends out a broadcast request onto the network, requesting
the resolution of an IPv4 address. The host with the IPv4 address then replies with its link layer address
which the device stores in a table. The vulnerability here is that ARP, unlike DNS, will accept updates
to its ARP table at any time. Hence, an attacker can send the source device an ARP reply and force it to
change its ARP table entry to make a link layer address resolve to a different IPv4 address. An entry
explicitly marked permanent however cannot be changed.

ARP poisoning, is also referred to as ARP cache poisoning or ARP poison routing. In this, the ARP
cache of two devices is “poisoned” with the MAC address of our own NIC card. A fake ARP reply in
response to the request for a physical address corresponding to a legitimate IPv4 address on the
network. The fake reply(gratuitous ARP reply) has our own MAC address. Now the device that
requested the physical address, sends all its communication to our machine instead of the machine
which actually has the IPv4 address required assigned to it. We can now monitor and also alter any
information between the two devices.

Using Ettercap

The tool here used for ARP poisoning is called Ettercap. According to the official website, “Ettercap is
a comprehensive suite for man in the middle attacks. It features sniffing of live connections, content
filtering on the fly and many other interesting tricks.” It is mainly used for network analysis and
security auditing.

To ARP poison via Ettercap, we first start Unified scanning on the network. Ettercap supports two
kinds of scanning unified and bridged. In unified scanning, Ettercap sniffs all the packets passing on
the network and forwards the ones not directed to the host it is running on, using layer 3 routing.

Bridged sniffing on the other hand, uses two network interfaces and forwards data from one network
interface to the other while sniffing and content filtering.

Ettercap builds a lists of hosts on the network while sniffing. From this list, the two devices that we
want to Man-in-the-middle in can be selected. In our case, we choose the host we want to eventually
poison as 'Target 1' and add the default gateway as 'Target 2.' Having done so, we ARP poison the
connections, by selecting the 'sniff remote connections' option in Ettercap. MITM attack has now been
successfully executed and we are now in the middle of the communication between the target and the
Access Point. At this point, if our target was using a particularly secure browser such as the latest
version of Mozilla Firefox or Opera, they would have received a security warning and would not have
been allowed to access HTTPS IPs. However, lesser browsers such as Internet Explorer, while giving
some warning do not stop the user from browsing.

Having successfully ARP poisoned our victim machine, we now have to DNS spoof it in order to
redirect the target browser to an Internet link of our choice. DNS spoofing, as the name suggests,
exploits vulnerabilities in the Domain Name System. The DNS is a way to convert human readable urls
such as www.google.com into machine readable IP addresses. When a user wishes to visit
www.google.com, a request is sent to the DNS servers to resolve the URL into an IP address. The DNS
servers form a layered, hierarchal system themselves, with the user’s router serving as one layer, the
user’s Internet Service Provider as the next and so on. These layers, as well as the user’s own computer,
maintain a cache of DNS lookups already performed for easy and rapid access. DNS spoofing works by
sending the wrong IP address in return of a lookup by the target host, taking them to a different page, or
one to one of our own. The average Internet user should have no idea that this has occurred.

In Ettercap, dns_spoof is a plug-in that enables a host already in the middle of a communication
between two other hosts on the network, to spoof any DNS look up. Before enabling the plug-in, we go
into the etter.dns file in the Ettercap directory and enter the URL we want to spoof and the IP it needs to
be spoofed to. Having saved this, the plug-in can now be enabled. Another plug-in to be enabled is the
auto-add one, which “will automatically add new victims to the ARP poisoning MITM attack when they
come up. It looks for ARP requests on the LAN and when detected it will add the host to the victims list
if it was specified in the TARGET. The host is added when an ARP request is seen from it.” Having
enabled both these plug-in, the DNS specified has now been spoofed.

Step 3: Hooking the Target's browser with the Browser Exploitation Framework (BeEF)

We now have the capability to take the victim to which ever link we require, enabling us to hook their
browser and gain access to it and to the other functionalities connected to it. For this purpose we now
utilize the Browser Exploitation Framework (BeEF). BeEF is a penetration testing framework
specializing in detecting and exploiting browser vulnerabilities. By exploiting vulnerabilities, BeEF
takes over a victim’s current session using modules and payloads.

BeEF generates a link that once clicked on hooks the browser which was used to access that link. We
now need to persuade the target user to click on that link. We embedded the link into a page we send to
our user via DNS spoofing. Once the target clicks on the embedded link the target’s browser is taken to
a webpage, stored in our (the attacker’s) computer. That link should ideally be such that keeps the
victim onto the site for the longest amount of time. Since the only thing keeping the connection open is
the tab in which the web page with the hook has just opened. If that tab closes, the connection to the

target is lost. There are some built-in “Persistence” commands in BeEF such as Man-in-the-browser
and the Pop-Up option that serve to rectify this problem. Man-in-the-browser makes every link
accessed from the original hooker page such that the hook isn’t lost. So unless the target user manually
erases the hooker URL and types a different one, it stays hooked. Pop-Up opens pop-up windows that,
if passed unnoticed, will keep the victim user hooked even if the tabs are closed. Pop-Up is however
easily stopped if the victim has an advanced pop blocker. Another way to keep the user on for longer
are Social Engineering techniques. If we run Wireshark after getting onto the network we can see the
traffic on the network. It also shows us what web pages the victim uses most often. Armed with this
information, we can alter our BeEF hooker page and also the page we DNS spoof our victim towards.
We can alter it to look like a fake copy of the website. This would firstly not alarm the user to there
being any interference and secondly would keep them on longer, or make them click a link that is
supposed to be there anyway. If the Man in the browser command is running this click will keep the
victim hooked.

Now that the target is hooked, there are many commands that BeEF allows us to execute in the target’s
browser. The commands are divided into many sub folders such as Browser, Networking, Persistence,
Plug Ins, Miscellaneous etc. Each command exploits some vulnerability the browser might have. In our
case, we choose to access the victim’s webcam through the “Webcam” command in the Browser
subsection of the Command tab. The vulnerability exploited here is the Adobe Flash which enables us
to take pictures off of the webcam. A warning does appear but if this is worded cleverly enough, the
victim can be tricked into accepting the prompt that displays in lesser browsers such as Internet
Explorer.

